THE JOURNAL OF ANTIBIOTICS

THE STRUCTURE OF HENEICOMYCIN

RAY S. DEWEY, OTTO D. HENSENS, ALAN W. DOUGLAS and Georg Albers-Schönberg

Merck Sharp and Dohme Research Laboratories, Rahway, NJ 07065, U.S.A.

(Received for publication April 2, 1991)

The antibiotic heneicomycin (1), $C_{44}H_{62}N_2O_{11}$, was isolated from cultures of *Streptomyces filipinensis* as an amorphous yellow powder. Mass spectral and NMR analysis showed the compound to be a deoxy modification of aurodox (2), a member of the elfamycin antibiotic family. A marked change in mass spectral fragmentation compared to aurodox and ¹H NMR couplings indicated the absence of the hydroxyl at position 30 of aurodox (position 3 of the tetrahydropyran).

Heneicomycin (A21A) was discovered in a culture of *Streptomyces filipinensis* (NRRL No. 11044)^{1,2)}. The following, physical chemical and spectral evidence indicated the structure as one of the elfamycin class of antibiotics.

Experimental

The low resolution mass spectra of heneicomycin were run on a LKB 7000 mass spectrometer as the underivatized compound or as its trimethylsilyl ether. The HR-MS data were acquired on a Varian MAT 731 mass spectrometer. All NMR spectra were recorded on a Varian SC300, XL300, or XL400 NMR spectrometer at ambient temperature. The ¹H NMR spectra were recorded in CD₃OD (buffered) at 300 MHz and in acetone- d_6 (spiked with CD₃COOD) at 400 MHz using the respective solvent peaks at δ 3.30 and 2.04 as internal standards. The ¹³C NMR spectra were recorded in CD₃OD (buffered) at 75 MHz and acetone- d_6 (spiked with CD₃COOD) at 100 MHz using the solvent peaks at 49.0 and 29.8 ppm, respectively, as internal references. The ¹H NMR assignments in CD₃OD were made by spin-spin decoupling experiments at 300 MHz and COSY in acetone- d_6 at 400 MHz using the standard pulse sequence³.

Heneicomycin (1) R = HAurodox (2) R = OH

Pure absorptive mode 2D NOE experiments in acetone- d_6 (4 mg/0.5 ml) were obtained for 1 and aurodox (2) by the hypercomplex method of STATES *et al.*⁴⁾. Data sets (1 K × 1 K) were accumulated in 128 increments, using 96 transients for each value of t_1 , a mix time of 0.5 second, and a delay of 2.5 seconds HETCOR were recorded in acetone- d_6 using the standard pulse sequence of BAX and MORRIS⁵⁾. The experiment was optimized for ${}^{1}J_{CH} = 135$ Hz using 64 increments and a delay of 1 second. The IR spectra were recorded on a Perkin Elmer Model 137; the optical rotation was taken on a Perkin Elmer 241 polarimeter, and the UV spectra on a Cary 15 recording UV spectrophotometer.

Heneicomycin (1) was purified by preparative TLC on silica gel in CHCl₃-CH₃OH-conc aq NH₃ (80:20:1). The product had an Rf of 0.3 and was isolated as an amorphous, slightly deliquescent, lemon yellow powder after lyophylization from benzene-methanol (20:1), $[\alpha]_D - 74.3^\circ$ (c 1, CH₃OH). IR (acetonitrile) cm⁻¹ 3424, 3333, 1650, 1616, 1590, 1538; UV λ_{max} (0.1 M HCl in CH₃OH) nm (ε) 233 (64,300), 330 (30,800) and λ_{max} (0.1 M NaOH in CH₃OH) nm (ε) 224 (64,300), 318 (34,800).

Results and Discussion

The UV spectrum was typical of certain members of the elfamycin class of antibiotics such as aurodox⁶, mocimycin⁷ (kirromycin)⁸ and efrotomycin⁹. Its antibacterial spectrum also showed similarities to these substances¹.

The MS data is summarized in Table 1. The FD-MS of 1 showed molecular ion peaks at m/z 795 $(M+H)^+$ and 817 $(M+Na)^+$. The mass spectrum of the trimethylsilyl derivative of 1 showed peaks up to m/z 1,226.7 for the hexatrimethylsilyl product. These were consistent with a deoxy modification of aurodox (2). The EI-MS of underivatized 1 showed low mass fragments at m/z 152, 138 and 123 characteristic of the 3-acyl-N-methyl pyridone portion found in this group of elfamycins. Heneicomycin showed a characteristic peak at m/z 245 ($C_{16}H_{21}O_2$) which could be ascribed to the ketene dihydropyran fragment, 3. In contrast, 1 showed no peak at m/z 296, a characteristic of the spectra of mocimycin and aurodox.

Method	Found (m/z)	Assignments		
FD-MS	817	$M + Na, C_{44}H_{62}N_2O_{11} + Na$		
	795.777, 759	$M+H$, $M+H-H_2O$, $M+H-2H_2O$		
HREI-MS	758.4091	Calcd for C ₄₄ H ₅₈ N ₂ O ₉ : 758.4139		
	648.3397	Calcd for $C_{37}H_{48}N_2O_8$: 648.3410, M – (H ₂ O, CH ₃ CH=CHCH=CHCHO, CH ₃ OH)		
	384.2531	Calcd for C ₂₄ H ₃₄ NO ₃ : 384.2538		
	338.1396	Calcd for C ₂₀ H ₂₀ NO ₄ : 338.1392		
	245.1535	Calcd for $C_{16}H_{21}O_2$: 245.1541		
EI-MS	758	$M - 2H_2O$		
	680	$M - (H_2O, C_6H_8O)$		
	648	$M - (H_2O, CH_3OH, C_6H_8O)$		
	620	$M - (2H_2O, C_9H_{14}O)$		
	588	$M - (2H_2O, CH_3OH, C_9H_{14}O)$		
	245	$C_{16}H_{21}O_2$		
	152	$COC_5NH_2(OH)_2CH_3$, base peak		
	123	$COC_3H_2CONCH_3$		
	1,226.7ª	$M + 6[(CH_3)_3Si - H]$		
	1,281.16	$M + 6[(CD_3)_3Si - H]$		
	224ª	$C_7H_6NO_3 + (CH_3)_3Si - H$		

Table 1. Mass spectral data for 1.

^a Trimethylsilyl derivative.

^b Trimethylsilyl-d₉ derivative.

The m/z 296 fragment was assigned to a lactone pyran structure resulting from closure of the aurodox C-30 hydroxyl onto the amide carbonyl. In fact this product had been produced chemically from these antibiotics^{7,10}. Similarly, in the case of effotomycin a related fragment at m/z 630 had been observed and was attributed to a disaccharide derivative of this lactone⁹).

The fragment of 1 at m/z 680 could be derived by loss of water at C-30 and C-31 in the tetrahydropyran ring followed by a reverse Diels-Alder to release the hexadienal derived from carbons at positions 33, $35 \sim 39$. HR peak matching of m/z 648 supported this structure as m/z 680 with a loss of CH₃OH. Cleavage between 19 and 20 would lead to the fragments at m/z 338 (C₂₀H₂₀NO₄) containing the pyridone ring and at m/z 384 (C₂₄H₃₄NO₄) corresponding to the amide pyran fragment.

The ¹H NMR spectrum of **1** is shown in Fig. 1 and the assignments are compared with those for aurodox in Table 2. These may be compared with the recently published ¹H NMR data for kirromycin in phosphate buffered D_2O^{11} . Decoupling studies suggested a $-CH_2-CHOH$ - moiety at positions 30, 31, where the vicinal couplings of J=5.5 and 11.5 Hz (Table 2) indicated an equatorial OH group at either C-30 or C-31. Comparison of the predicted chemical shift changes of the two methyl groups at C-32 for the two cases with those of aurodox allowed the OH group to be located at C-31 as shown in Fig. 2. Both methyl groups, C-47 and C-48, would be perturbed on one hand by the OH at C-30 whereas only the 47-CH₃ group at δ 0.74 and assigned to the axial position at C-32 is shifted upfield from δ 0.91 in aurodox. This is attributed to the absence of the 1,3-diaxial interaction between the OH at C-30 and the 47-CH₃

group in aurodox. A similar shift (0.25 ppm) was noted for 5α , 14α -androstane and its 2β -hydroxy derivative¹²⁾ and noted in 1,3-diaxial methyl cyclohexanols¹³⁾. Verification of the methyl assignments and the relative stereochemistry of the pyranose ring system was obtained *via* a pure absorptive mode 2D NOE experiment using a mix time of 0.5 second and an equilibration delay of 2.5 seconds. The correla-

3 m/z 245.1541 C₁₆H₂₁O₂

Fig. 1. ¹H NMR spectrum of heneicomycin (1) in buffered CD₃OD at 300 MHz.

No. ^b	Heneicomycin ^c	Aurodox°	No. ^b	Heneicomycin ^e	Aurodox ^c
5-H	6.12 (1H, d, 7.7)	5.92 (1H, d, 7.6)	30-H	1.48 (1H _{ax} , dd, 12.5,	3.66 (1H, d, 3.6)
6-H	7.53 (1H, d, 7.7)	7.33 (1H, d, 7.5)		11.5),	
9-H	6.97 (1H, br d, 11)	7.03 (1H, br d, 11.1)		1.94 (1H _{eq} , dd, 12.5,	
10-H	6.71 (1H, dd, 11, 14.7)	6.68 (1H, dd, 11.1,		5.5)	
		14.0)	31-H	3.74 (1H, dd, 11.5, 4.8)	3.59 (1H, d, 3.5)
11-H	6.45 (1H, dd, 14.7,	6.42 (1H, dd, 14.8,	33-H	4.15 (1H, d, 6.7)	4.21 (1H, br d, 6.0)
	10.6)	10.8)	35-H	5.63 (1H, dd, 6.2, 15)	5.63 (1H, dd, 6, 15)
12-H	6.50 (1H, obscured)	6.00 (1H, obscured)	36-H	6.55 (1H, m, obscured)	6.56 (1H, dd, 15, 10)
13-H	6.25 (1H, dd, 14, 7.5)	5.98 (1H, obscured)	37-H	6.00 (1H, dd, 10, 11)	6.08 (1H, dd, 11, 10)
14-H	4.31 (1H, t)	4.27 (1H, \sim t, obscured)	38-H	5.48 (1H, dq, 10.5, 7)	5.47 (1H, dd, 10.4, 6.8)
15-H	4.31 (1H, t)	4.28 (1H, \sim t, obscured)	39-H	1.75 (3H, d, 7)	1.75 (3H, br d, 6.6)
16-H	4.21 (1H, t, 4)	4.18 (1H, \sim t, 4.1)	40-H	3.45 (3H, s)	3.39 (3H, s)
17 -H	3.70 (1H, dd, 3.5, 7)	3.69 (1H, dd, 4, 7)	41-H	2.01 (3H, br s)	1.98 (3H, s)
19-H	2.19 (1H, ddg, 2.2,	2.17 (1H, m)	42-H	0.82 (3H, d, 6.6)	0.82 (3H, d, 6.6)
	6.5, 6.5)		43-H	3.17 (3H, s)	3.14 (3H, s)
20-H	3.34 (1H, d, obscured)	3.36 (1H, d, 3)	44-H	1.67 (3H, s)	1.66 (3H, br s)
22-H	5.98 (1H, br d, 11)	6.65 (1H, d, 10.2)	45-H	1.66 (2H, obscured)	1.72 (2H, m, obscured)
23-H	6.55 (1H, m)	5.67 (1H, dd, 15, 10)	46-H	0.93 (3H, t, 7.5)	0.91 (3H, br t, 7.6)
24-H	5.69 (1H, m)	5.66 (1H, d~t, 15, 7)	47-H	0.74 (3H, s)	0.87 (3H, s)
25-H	3.92 (2H, dq)	3.90 (2H, m)	48-H	0.91 (3H, s)	0.87 (3H, s)
28-H	2.40 (1H, dd, 5.5, 10)	2.82 (1H, dd, 5.6, 9.5)			

Table 2. Comparison of ¹H NMR data for heneicomycin (1) and aurodox $(2)^{a}$.

^a Chemical shifts are reported in ppm downfield of TMS. Number of protons, multiplicity and coupling constants (J=Hz) are shown in parentheses.

^b Numbering system for aurodox.

° In CD₃OD - phosphate buffer.

Fig. 2. ¹H NMR assignments of the tetrahydropyran region of 1 in acetone- d_6 spiked with CD₃COOD and NOE correlations.

tions are shown in Fig. 2.

The proton decoupled ¹³C NMR spectrum of 1 closely resembled that of aurodox and its des-*N*-methyl analog, kirromycin. A comparison of ¹³C NMR spectra of heneicomycin in buffered methanol- d_4 and in acetone- d_6 spiked with acetic acid- d_4 and aurodox in acetone- d_6 spiked with acetic acid- d_4 in summarized in Table 3. Further comparison can be made with published data for aurodox in buffered methanol- $d_4^{14,15}$ and kirromycin in acetone- d_6^{11} , and assignments for protonated carbons in 1 and aurodox were

Assignment	Heneicomycin (1) ^a	1 ^b	Aurodox ^b	Assignment	Heneicomycin (1) ^a	1 ^b	Aurodox ^b
44-CH ₃	11.2	11.2 q	11.2 q	29-HOCO	99.4	99.2 s	100.4 s
46-CH3	12.4	12.3 q	12.3 q	5-CH	109.5	100.3 d	100.0 d
47-CH ₃	11.9	12.4 q	15.9 q	C-3	113.0	109.2 s	108.8 s
41-CH ₃	12.4	13.2 q	13.3 q	38-CH	126.4	125.8 d	125.7 d
39-CH ₃	13.6	13.6 q	13.6 q	36-CH	127.9	127.0 d	126.8 d
42-CH ₃	14.0	14.0 q	14.0 q	23-CH ^d	127.9	127.6 d	127.5 d
45-CH ₂	21.5	21.4 t	21.0 t	10-CH	129.9	128.8 d	128.8 d
48-CH ₃	23.0	23.0 q	24.5 q	37-CH	130.3	130.3 d	130.3 d
19-CH	36.8	36.6 d	36.6 d	22-CH	130.3	130.4 d	130.4 d
40-CH ₃	36.5	36.9 q	36.9 q	35-CH	130.8	131.0 d	130.9 d
30	38.2	39.0 t	71.2 d	24-CH ^d	131.0	131.4	131.5 d
C-32	40.2	40.0 s	39.5 s	- 12-CH	133.6	132.7 d	132.8 d
25-CH ₂	41.9	41.4 t	41.5 t	9-CH	135.7	135.9	135.4 d
43-CH ₃ O	56.2	56.1 q	56.1 q	C-21	135.7	135.7 s	135.6 s
28-CH	58.2	56.9 d	51.7 d	13-CH	135.7	135.9 d	135.8 d
31-CHOH	72.5	71.7 d	73.1 d	11-CH	139.0	138.8 d	138.6 d
15-CHOH	73.9	73.3 d°	73.3 d°	C-8	139.8	138.9 s	138.9 s
16-CHOH	74.6	74.7 d°	74.7 d°	6-CH	141.3	144.4 d	144.9 d
33-CH	77.5	76.7 d	76.3 d	4-CO	164.7	161.9 s	162.0 s
14-CHO	81.4	81.2 d	81.3 d	2-CO	176.6	173.1	174.0 s
17-CHO	85.0	84.5 d	84.5 d	27-CO	177.9	176.0 s	176.8 s
20-CHO	91.7	91.4 d	91.4 d	7-CO	202.5	201.2 s	201.6 s

Table 3. ¹³C NMR assignments of heneicomycin (1) and aurodox (2).

^a In buffered CD₃OD.

^b In acetone- d_6 spiked with CD₃COOD.

^{c,d} May be reversed.

corroborated using HETCOR experiments. Differences which can be ascribed to the loss of the hydroxyl in the pyran system are seen. The appearance of the peak at δ 39.0 is ascribed to the C-30 methylene carbon, and the loss of the resonance at δ 71.2 as seen in aurodox can be associated with the loss of the C-30 hydroxyl. Confirmation was also obtained by the effect on the chemical shifts of the two methyl groups at C-32. These could not be distinguished previously¹¹, but on the basis of the NOE and HETCOR experiments, the two methyls could be readily assigned in 1 and by analogy in aurodox (Table 3). The upfield resonance in this family of elfamycins is therefore assigned to the axial 47-CH₃. The appearance of a peak at δ 12.4 in 1 is therefore ascribed to an upfield shift of the axial methyl, C-32 at δ 15.9 in aurodox as a result of the loss of the C-30 axial hydroxyl. A similar 1,3-diaxial shift has been observed in 4 β -hydroxy and 2 β -hydroxy 10 β -methyldecalins¹⁶ and described in androstane and cholestane at the C-19 methyl for the 4 β -, 6β - or 2 β -hydroxy derivatives¹⁷. A deshielding of 5 ppm for C-28 is consistent with a loss of a γ gauche effect of an axial OH in a six membered ring to the equatorial carbon. Little change is seen at the quaternary C-32. Essentially no shift was seen at C-10 in the steroid cases¹⁷ by introduction of a β -hydroxyl at C-4 or C-6 or at C-10 of the 2 and 4 β -hydroxy-10-methyl-*trans*-decalins¹⁶.

Exposure of 1 to a trace of NaOCD₃ in CD₃OD resulted in the disappearance of the 28-H resonance at δ 2.40 in the ¹H NMR spectrum. This was attributed to the ring opening of the hemiketal at C-29, which would yield a β -ketoamide. Rapid deuterium substitution at C-28 would be expected from the enolization of this ring opened intermediate.

This pyran system is found in kirrothricin at the same level of hydroxylation¹⁸⁾. The ¹³C NMR spectrum of an aldehyde cleavage product containing the pyran system (structure 1, ref 18, $CDCl_3$) showed

VOL. 44 NO. 8

THE JOURNAL OF ANTIBIOTICS

a peak at δ 39.2 corresponding to position 30 of heneicomycin and δ 71.8 corresponding to position 31 of heneicomycin. The antibiotic UK-69,753 has the same pyran oxygenation but as the disaccharide derivative analogous to efrotomycin¹⁹. Finally, a structurally related antibiotic complex, SB22484, was reported recently as having this C-30 deoxygenated pyran system and included components having C-31 equatorial and axial hydroxyl groups²⁰.

Heneicomycin represents another member of the class of elfamycins. The nonoxygenated C-30 position is consistent with the biosynthetic scheme proposed for $aurodox^{11}$ and effotomycin (unpublished) were C-30 in 1 is derived from C-2 of acetate.

Acknowledgments

We wish to express our thanks to Mr. JACK SMITH for the MS measurements and to MYRA WALDEN for assistance in the preparation of this manuscript.

References

- ZIMMERMAN, S. B.; J. H. CHALMERS, Jr., R. S. DEWEY, E. O. STAPLEY & S. HERNANDEZ: Heneicomycin, a new antibiotic (A21A): Fermentation, isolation, and antibacterial spectrum. J. Antibiotics 32: 665~666, 1979
- 2) ZIMMERMAN, S. B. & J. H. CHALMERS, Jr. (Merck & Co., Inc.): Antibiotic A21A. U.S. 4,071,631, Jan. 31, 1978
- BAX, A.; R. FREEMAN & G. A. MORRIS: Correlation of proton chemical shifts by two-dimensional Fourier transform NMR. J. Magn. Reson. 42: 164~168, 1981
- STATES, D. J.; R. A. HABERKORN & D. J. REUBEN: A two-dimensional nuclear Overhauser experiment with pure absorption phase in four quadrants. J. Magn. Reson. 48: 286~292, 1982
- BAX, A. & G. A. MORRIS: An improved method for heteronuclear chemical shift correlation by two-dimensional NMR. J. Magn. Reson. 42: 501~505, 1981
- BERGER, J.; H. H. LEHR, S. TEITEL, H. MAEHR & E. GRUNBERG: A new antibiotic X-5108 of Streptomyces origin. I. Production, isolation and properties. J. Antibiotics 26: 15~22, 1973
- Vos, C. & P. E. J. VERWIEL: The total structure of the novel antibiotic mocimycin (MYC 8003). Tetrahedron Lett. 1973: 5173 ~ 5176, 1973
- WOLF, H. & H. ZÄHNER: Stoffwechselprodukte von Mikroorganismen. 99. Kirromycin. Arch. Mikrobiol. 83: 147~154, 1972
- 9) DEWEY, R. S.; B. H. ARISON, J. HANNAH, D. H. SHIH & G. ALBERS-SCHÖNBERG: The structure of effotomycin. J. Antibiotics 38: 1691~1698, 1985
- 10) MAEHR, H.; J. F. BLOUNT, R. H. EVANS, Jr., M. LEACH, J. W. WESTLEY, T. H. WILLIAMS, A. STEMPEL & G. BUCHI: Antibiotic X-5108. II. Structure of goldinono-1,4-lactone-3,7-hemiketal, a degradation product of the antibiotic. Helv. Chim. Acta 55: 3051~3054, 1972
- BARBER, J.; A. E. DEROME, T. D. HOWARD, L. LIAN, G. TEBB: Full assignments of the ¹H and ¹³C NMR spectra of the antibiotic kirromycin (mocimycin). Magn. Reson. Chem. 27: 748~753, 1989
- 12) BHACCA, N. S. & D. H. WILLIAMS: Applications of NMR Spectroscopy in Organic Chemistry Illustrations from the Steroid Field. p. 19, Holden-Day Inc., 1964
- BOOTH, H.; Applications of ¹H nuclear magnetic resonance spectroscopy to the conformational analysis of cyclic compounds. *In* Progress in Nuclear Magnetic Resonance Spectroscopy. *Ed.*, J. W. EMSLEY *et al.*, p. 277, Pergamon Press, 1962
- MAEHR, H.; M: LEACH, H. WILLIAMS & J. F. BLOUNT: The chemistry of aurodox and related antibiotics. Can. J. Chem. 58: 501 ~ 526, 1980
- 15) LIU, C.-M.; T. H. WILLIAMS & R. G. PITCHER: ¹³C-NMR studies on the biosynthesis of aurodox (antibiotic X-5108). J. Antibiotics 32: 414~417, 1979
- 16) GROVER, S. H. & J. B. STOTHERS: ¹³C Nuclear magnetic resonance studies. 38. Examination of the long-range shielding effects of the hydroxyl group in alicyclic systems. Can. J. Chem. 52: 870~878, 1974
- EGGERT, H.; C. L. VANANTWERP, N. S. BHACCA & C. DJERRASI: Carbon ¹³C nuclear magnetic resonance spectra of steroids. J. Org. Chem. 41: 71~78, 1976
- 18) ZEECK, A.; H.-U. HOPPE & I. HUMMEL: Die Konstitution des Kirrothricins. Tetrahedron Lett. 22: 2357 ~ 2360, 1981
- JEFSON, M. R.; J. BORDNER, C. P. REESE & E. B. WHIPPLE: UK-69,753, a novel member of the effotomycin family of antibiotics. II. Structure determination and biological activity. J. Antibiotics 42: 1610~1618, 1989
- FERRARI, P.; D. EDWARDS, G. G. GALLO & E. SELVA: Antibiotic SB22484: A novel complex of the aurodox group.
 II. Structure elucidation of the four factors. J. Antibiotics 43: 1359~1366, 1990